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• We define the notion of immunity to credible deviations.
• We discuss alternative versions of credibility.
• We single out immune rules with multidimensional alternatives and single-peakedness.
• We identify voting by quota 1 and n as the unique GCW immune rules.

a r t i c l e i n f o

Article history:
Received 15 March 2016
Received in revised form
11 November 2016
Accepted 15 November 2016
Available online 30 November 2016

a b s t r a c t

We study a notion of non-manipulability by groups, based on the idea that only some agreements
among potentialmanipulatorsmay be credible. The derived notion of immunity to crediblemanipulations
by groups is intermediate between individual and group strategy-proofness. Our main non-recursive
definition turns out to be equivalent, in our context, to the requirement that truthful preference revelation
should be a strong coalition-proof equilibrium, as recursively defined by Peleg and Sudhölter (1998, 1999).
We provide characterizations of strategy-proof rules separating those that satisfy it from those that do not
for a large family of public good decision problems.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In many contexts where the basic incentive property of
strategy-proofness can be met by non-trivial social choice
functions, it becomes natural to investigate whether some of
them may not only be immune to manipulation by individuals,
but can also resist manipulation by groups of coordinated
agents. In previous work (Barberà et al., 2010, 2016) we have
identified conditions under which, surprisingly, all social choice
functions that are immune to manipulations by individuals will
also be free from group manipulation. But this is not always
the case. In particular, many interesting strategy-proof rules in
separable environments1 will indeed be group manipulable. In
these cases, we shall argue that not all group manipulations
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1 We use this expression loosely here. Formal definitions of the environments we

refer to are given in Section 3.
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represent an equally serious threat, because some strategic
movements by coalitions are credible, while others are not. To
make this point precise, we define several notions of immunity
to credible group manipulations and characterize subclasses of
social choice rules that satisfy them in specific environments. We
concentrate especially in the following: we say that a deviation
leading to a profitable improvement for a group is credible
if no individual member of the group would gain from not
following the agreed upon strategy under the assumption that
all others stick to the agreement. Hence, a group manipulation
is credible if the set of prescribed strategies for those individuals
who plan to deviate are a Nash equilibrium in the induced game
where these agents could use any other preference instead, while
those of the rest of agents remain fixed.2 And then we say that
a rule is immune to credible group manipulations if no set of
agents can find a profitable deviation away from the truth that is

2 Actually, the concept remains the same if the possible deviations of
manipulators are limited to either following the prescription or revealing their true
preferences. See Section 4 for a deeper discussion of this and related points.
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credible. We illustrate the strength of our new definition, which is
more demanding than individual but weaker than group strategy-
proofness, by characterizing some families of rules in separable
environments, and distinguishing between those that canmeet our
new requirement and those that cannot. The issue of credibility
of group deviations has been formalized in alternative ways, one
of which is based on the recursive definition of coalition-proof
Nash equilibrium (see Bernheim et al., 1987). In fact, Peleg and
Sudhölter (1999) applied this concept to the same environment
that we analyze, and concluded that all rules that are strategy-
proof in that environment are also coalition-proof. In the same
paper, these authors (see also Peleg, 1998) define strong coalition-
proofness, again recursively based. Surprisingly, this turns out to
be equivalent, in our context, to our non-recursive concept of
immunity. Let us remark again that our notion of immunity, and
that of strong coalition-proofness, allows for a classification and
characterization of different strategy-proof rules according to their
degree of group manipulability.

After this Introduction we provide notation and definitions
in Section 2. Section 3 presents characterization results in two
specific contexts. We start with the problem faced by voters
who must select a set of entrants to a club, as described in
Barberà et al. (1991). We concentrate on quota rules: voters can
support all candidates they like, and then those who receive at
least a fixed number of votes, q, are chosen. In the domain of
separable preferences, we show that rules based on quota 1 or
n (where n is the number of voters) are immune to credible
deviations, while all other rules in the class are not. Hence,
very extreme distributions of power among voters are needed
to guarantee immunity. We then turn to a general version of
choice among multi-dimensional alternatives under separable
preferences, also called multidimensional single-peaked. We build
on Moulin (1980), Border and Jordan (1983) and Barberà et al.
(1993). The cases we consider include the previous example and
many more. We restrict attention to a large class of rules that
are strategy-proof in this context, and again characterize those
within the class that are immune to credible deviations by groups.
Again, a requirement in the form of unanimity plays a crucial
role in separating these rules for all the rest, those that are
credibly manipulable. Section 4 discusses alternative definitions
of credibility for group manipulations, establishes the equivalence
of several apparently different formulations, and the differences
with other potential definitions, whose proofs are also examined.
Section 5 concludes with some final remarks. Appendix contains
proofs that are not essential for the continuity of our arguments.

2. The model and definitions: immunity and credibility

Let N = {1, . . . , n} be the set of agents and A be the set
of alternatives. Preferences are complete, reflexive, and transitive
binary relations on alternatives. Let U denote such set of
preferences. For i ∈ N , Ri denotes agent i’s preferences on A.
As usual, Pi and Ii denote the strict and indifference preference
relation induced by Ri, respectively. A preference profile RN =

(R1, . . . , Rn) ∈ U×· · ·×U = Un is a n-tuple of preferences on A.
It can also be represented by RN = (RC , RN\C ) ∈ Un whenwewant
to stress the role of coalition C in N . We call a subprofile of agents
in C as RC ∈ ×i∈C U = Uc .

A social choice function (or rule) f on Un is a function f : Un

→ A.
At this point it is worthmentioning that althoughwe define our

main concept and state our results in Sections 2 and 4 assuming
that the set of preferences is the same for all agents, all definitions
and results would be correct and straightforwardly obtained if we
allowed agents’ sets of preferences to be different. We assume
equal sets of preferences since this is the case of our application
in Section 3.

Let us define some incentive-related properties of social choice
functions. The best known non-manipulability axiom is that of
strategy-proofness. In its usual form it requires the truth to be a
dominant strategy for each agent. However, we provide a more
general definitionwhich encompasses strategy-proofness and also
considers the option that several agents evaluate the possibility of
joint deviations.

Definition 1. Let f be a social choice function on Un. Let RN ∈ Un

and C ⊆ N . A subprofile R′

C ∈ Uc such that R′

i ≠ Ri for all i ∈ C
is a profitable deviation of coalition C against profile RN (for f ) if
f (R′

C , RN\C )Pif (RN) for any agent i ∈ C .

Profitable deviations are usually called (group) manipulations
in the standard definitions of group and individual strategy-
proofness. Throughout the paper we shall assume that among
profitable deviations for single agents there is always one that is
best.3

Definition 2. A social choice function f on Un is manipulable at
RN ∈ Un by coalition C ⊆ N if there exists a profitable deviation of
coalition C against profile RN , say R′

C ∈ Uc . A social choice function
is group strategy-proof if it is not manipulable by any coalition
C ⊆ N .

Whenwe consider only deviations by single agent coalitionswe
have strategy-proofness.

Definition 3. A social choice function f on Un is manipulable at
RN ∈ Un by agent i ∈ N if there exists a profitable deviation of
agent i against profile RN , say R′

i ∈ U. A social choice function is
strategy-proof if it is not manipulable by any agent i ∈ N .

Remark that, formally, strategy-proofness is a much weaker
condition than group strategy-proofness in any of its versions. In
many environments and in spite of this definitional gap, individual
strategy-proof rules end up also being group strategy-proof.4 But,
of course, in many other situations this equivalence may not hold,
and even when there are attractive strategy-proof rules, they are
open to manipulation by groups. In this paper, we concentrate
on a form of manipulation that is intermediate between those of
individual and group strategy-proofness and that is based on the
notion of credible profitable deviations, those where no agent in
the deviating coalition can gain by not declaring those preferences
she was supposed to use as part of the group strategy. Formally,

Definition 4. Let f be a social choice function on Un. Let RN ∈ Un

and C ⊆ N . We say that R′

C ∈ Uc a profitable deviation of C
against RN is credible if for all i ∈ C and all Ri ∈ U, then f (R′

C ,

RN\C )Rif (Ri, R′

C\{i}, RN\C ).

On other terms, a profitable deviation by C from RN = (RC ,

RN\C ) is credible if R′

C is a Nash equilibrium of the game among
agents in C , when these agents strategies are their admissible
preferences and the outcome function is f (·, RN\C ).

3 The existence of a best deviation is guaranteedwhen thenumber of alternatives,
and those of preferences are finite. Moreover, the condition will also hold under
standard assumptions.
4 See Le Breton and Zaporozhets (2009) and Barberà et al. (2010, 2016).
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Definition 5. A social choice function f on Un is immune to cred-
ible deviations if for any RN ∈ Un, any C ⊆ N , there is no credi-
ble profitable deviation of C against RN (that is, for any profitable
deviation R′

C ∈ Uc of C against RN there exists i ∈ C such that
f (Ri, R′

C\{i}, RN\C )Pif (R′

C , RN|C ) for some Ri ∈ U).5

Immunity to credible deviations means that no profitable
deviation of any coalition is credible at any profile. Observe that
group strategy-proofness implies immunity to credible deviations
as defined above. However, in general the converse implication
fails (see Proposition 1). Moreover, as Lemma 1 shows, immunity
to credible deviations implies strategy-proofness. And strategy-
proofness implies immunity to credible deviations by singletons.

Lemma 1. Any social choice function f onUn that is immune to cred-
ible deviations is strategy-proof.

Proof. By contradiction, let RN ∈ Un, i ∈ N , and R′

i ∈ U such that
R′

i ≠ Ri and f (R′

i, RN\{i})Pif (RN) and R′

i be such that it is a best de-
viation for agent i (which, as already stated, we assume to exist).
By immunity to credible deviations, there exists Ri ∈ U, such that
f (Ri, RN\{i})Pif (R′

i, RN\{i}) which contradicts that R′

i is a best devia-
tion for i. �

3. Applications

We have remarked in the introduction that in some important
domains one can define strategy-proof rules that are, however,
not group strategy-proof. In this section we illustrate the strength
of our new definition, by showing that it allows to differentiate
between different rules that are all manipulable by groups, but
with different degrees of credibility. In fact, we can characterize
the subfamilies of strategy-proof, anonymous, and onto rules that
are immune to credible group manipulations, and separate them
from those that are not.

We concentrate on the analysis of strategy-proof rules in
contexts where alternatives aremultidimensional and preferences
are multidimensional single-peaked, since it is a very well studied
case admitting a large family of non-trivial, strategy-proof social
choice rules which are, nonetheless, group manipulable. Hence, it
is a natural testing ground for our presumption that some of them
may be immune to credible manipulations while others are not.

For expositional purposes, we have chosen to first discuss a
special case of the general model, one where alternatives are sets
of candidates, preferences are over sets and satisfy a separability
condition. After that, we turn to the general case. The reader who
prefers to stick to the initial example can already appreciate the
broad lines of the arguments leading to our characterizations.
Likewise, the reader who prefers the general (and somewhat more
involved) arguments may want to skip the special case.

Now, let us comment that the distinction between those
strategy-proof rules in our context that are immune to group
deviations and those that do not depend on the existence of some
‘‘privileged’’ alternative in each dimension that will be chosen
unless all agents agree otherwise.6 In that limited sense, our
immune rules satisfy a form of solidarity among agents that has
been presented as a normative requirement in a different context
(Thomson, 1993, 1999). However, we prefer to remain agnostic
regarding the desirability of using those rules, rather than others

5 For short, we use the expression ‘‘immunity to credible deviations’’ instead
of ‘‘immunity to credible profitable deviations’’ since, by Definition 4, a credible
deviation is profitable.
6 To be more precise, observe that for the setting studied in Section 3.2, such

privileged alternative may not exist in one dimension. This is because in the one
dimensional setting each strategy-proof rule is also group strategy-proof.
that may be vulnerable to credible group deviations but provide
a more even treatment to different alternatives. At any rate, our
characterization is based on remarks that hinge upon our own
definition of credibility and do not depend on any normative
considerations.

Let us anticipate the reasons why we may be able to avoid
credible deviations under certain rules and not in others. The
explanation at this point will necessarily be sketchy, as it comes
before formal statements, butwe hope itmay help the reader. Take
an agent iwho is considering to participate in a profitable deviation
involving agents in coalition S, and in case of participation is
asked to reveal a preference R′

i rather than her true preference
Ri. Suppose that, if all other members of the deviating coalition
do follow the strategies they are asked to, then i will not be able
to alter the resulting outcome, regardless of whether she still
declares R′

i or any other preference. Thenwe can say that this agent
is individually redundant. And if all agents involved in a jointly
beneficial deviation are individually redundant in that sense, their
joint beneficial actionswill constitute a Nash equilibrium and their
threat will be credible. Now, how can onemake voters redundant?
By creating coalitions and strategies that support their objectives
‘‘in excess’’. Say that they need one agent to deviate in a certain
manner, but actually ask two of them to do it. Then, each one
becomes ‘‘redundant’’ for the purposes of the decision, but not of
course for the credibility of the threat. Our reasoning along the
proofs that followgoes in that direction. Rules that allow for threats
to be reinforced by involving more agents than those who are
strictly necessary to obtain a gain will be vulnerable to credible
deviations.

After these motivational comments, we introduce our general
framework and definitions.

Let K = {1, . . . , K} be a finite set of K ≥ 2 coordinates and
for each k ∈ K , let Bk = [ak, bk] with ak < bk be an integer inter-
val. Our alternatives are K -dimensional vectors in B =

K
k=1 Bk.

To stress the role of a set of coordinates kS , we will write x =
xkS , xK\kS


∈ B. We endow B with the L1-norm. That is, for any

x ∈ B,

∥x∥ =

K
k=1

|xk|.

Given x, y ∈ B, the minimal box containing x and y is defined by

MB(x, y) = {z ∈ B : ∥x − y∥ = ∥x − z∥ + ∥z − y∥} .

We restrict attention to the case where individual preferences
are antisymmetric and thus, have a unique best alternative that we
denote by τ (Ri).

We now impose a restriction on preferences which is a natural
extension of single-peakedness to the multidimensional setting.

Definition 6. A preference Ri ∈ U is multidimensional single-
peaked if for any z, y ∈ B, if y ∈ MB (z, τ (Ri)) then yRiz.

Let S ⊂ U be the set of multidimensional single-peaked
preferences on B. Under this preference restriction τ (Ri) =

(τ1 (Ri) , . . . , τK (Ri)) ∈ B where τj (Ri) is the best (or top) alter-
native of Ri in dimension j.

Multidimensional single-peakedness has two basic implica-
tions. One is that the restriction of preferences to alternatives that
only differ in a single dimension, while holding the values in all
other dimensions fixed, has its best element at the same value than
the absolute best alternative. Informally, the projection of the top
in any dimension is the top of the projection; and this is indepen-
dent of the values at which we may have fixed the rest of dimen-
sions. The other implication is that any of these one-dimensional
restrictions is single-peaked.
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It is known in the literature (Barberà et al., 1993) that the
class of multidimensional Generalized Median Voter Schemes
(GMVS) are the only strategy-proof social choice functions in
our setting, where multidimensional GMVS can be written as K
unidimensional GMVS, one for each dimension. In this paper we
restrict attention to a particular subclass of GMVS that is a K -
dimensional extension of what Moulin (1980) called generalized
Condorcet winner rules.

For each k ∈ K , let Pk = {p1k, . . . , p
n−1
k } be an ordered list of

n−1 values in Bk where p1k ≤ · · · ≤ pn−1
k . In what follows, we shall

use K lists of such values, one for each dimension, as definitional
parameters.

Definition 7. We say that f : Sn
→ B, f = (f1, . . . , fK ) is a gener-

alized Condorcet winner rule if for any profile RN ∈ Sn, for any
k ∈ K , fk(RN) = med{τk(R1), . . . , τk(Rn), p1k, . . . , p

n−1
k }, where

Pk(f ) = {p1k, . . . , p
n−1
k } is a list of parameters in Bk.7

Remark 1. Generalized Condorcet winner rules constitute the set
of anonymous, onto, strategy-proof rules in multidimensional
single-peaked domains (see Barberà et al., 1993).

Remark 2. When all parameters in Definition 7 have the same
value for some dimension k, we say for short that the list of
parameters is degenerate in that dimension. That does not mean,
however, that these rules are not interesting. See our discussion in
Section 5.

3.1. Choosing sets of candidates

Before engaging in a full analysis of those rules that are immune
in a general framework, we consider a simple case proposed in
Barberà et al. (1991). These authors discuss situations where there
exists a set O of K potential candidates or objects out of which a
set of agents must choose the new members of a club, and they
characterize the voting rules that may be strategy-proof when
preferences are separable. For the benefit of the readerwho prefers
to stick to this simple case, we analyze it separately, but let us
start by saying that it is simply a special case of our more general
result discussed in the following subsection. This is because any
set of candidates can be described by its characteristic function,
assigning value 1 to those that are in the set and 0 to those
outside it. Hence, in terms of the alternatives, this is a special case
where Bk can take only two values, 0 and 1, in each dimension.
As for the restriction of preferences, their notion of separability is
equivalent to multidimensional single-peakedness when adapted
to their limited context.8 Aswe have observed for the general case,
here again the best element in any dimension will be found at
the value of the absolute best in that dimension (now 0 or 1),
and the implication of single-peakedness is immediate because the
variable in each dimension only takes two values.

Individual preferences are linear orders on the set 2O (including
the empty set). Given any preference R on 2O , we define the set of
‘‘good’’ objects G(O, R) = {ok ∈ O : {ok}P∅} and the set of ‘‘bad’’
objects O \ G(O, R) = {ok ∈ O : ∅P{ok}}.

Definition 8. R is a separable preference on 2O if and only if for
any set T and any object ol ∉ T , T ∪ {ol}PT if ol ∈ G(O, R).

7 The notation med denotes the median(s) of an ordered list. In the present
definition this will be unique.
8 See also Border and Jordan (1983), Le Breton and Sen (1999) and Le Breton

and Weymark (1999) who have analyzed a model with separable preferences in
continuous multidimensional spaces.
In words, adding a new good object to any set makes the union
better than the original set and adding a bad objectmakes it worse.
Now S denote the set of all separable preferences.

In this setting there exist strategy-proof social choice functions.
In particular, the set of such functions that are anonymous, neutral,
and satisfy voter sovereignly coincides with the family of voting by
quota rules, f : Sn

→ 2O defined as follows:

Definition 9. Let q ∈ {1, . . . , n}. The social choice function f on Sn

defined so that for any RN ∈ Sn,

f (RN) = {ok ∈ O : |{i : ok ∈ G(O, Ri)}| ≥ q}

is called voting by quota q.

However, none of these voting by quota rules are group
strategy-proof. And yet, we will show that some of them are im-
mune to credible deviations, while others are not.

Before providing a characterization theorem allowing to distin-
guish between those rules that are immune and those that are not,
we present two examples with 5 voters and 2 candidates. The set
of all separable preferences when K = 2 is detailed in Table 1.

Example 1. Voting by quota 1: each agent declares her best set of
objects and any object that is declared as good by some agent is
selected.

Consider the profile where R1 = R3, R2 = R5 and for any other
agent Ri = R1 the outcome would be {o1, o2}, whereas 1 and 2
could vote for ∅ and get a preferred outcome.

This proves that the rule is group manipulable. Notice, how-
ever, that after having agreed on voting for empty, any of the two
agents could simply keep voting for their preferred candidate, and
obtain an even better result, provided the other sticks to her an-
nouncement. Hence, this group manipulation will not be credible.
We leave it to the reader to check that any other group manipu-
lation under this rule will fail to be credible. Hence, in this exam-
ple, voting by quota 1 is immune to credible deviations. Aswe shall
see the result generalizes.

Example 2. Voting by quota 3: each agent declares her best set of
objects and any object that is declared as good by at least three
agents is selected.

Consider now the profile where R1 = R2 = R3, R3 = R4 = R5

and R5 = R7. Then, the outcome would be {o1, o2}. Now, if agents
1 and 2 agree to vote for ∅, and so do agents 3 and 4, the coalition
of these four agents canmanipulate and have the outcome to be ∅,
that they all prefer to {o1, o2}. Hence, the rule is groupmanipulable.
Moreover, this particular manipulation is credible, because as long
as the rest of deviators complies with the agreement, no single
agent can profitably deviate from it. Hence, the rule is not immune
to credible deviations in this case.

Notice, however, that there would be other profitable devia-
tions that would not be credible. For example, the one where only
1 and 3 agreed to drop their support to their preferred alternative.

In fact, we can prove the following general result.

Proposition 1. Let n = 2 or n > 3. Then, voting by quota 1 and
n are the only voting by quota rules satisfying immunity to credible
deviations.

Proof. To prove that voting by quota 1 is never subject to credible
profitable deviations, notice that any profitable deviation by a
group must involve agents who do not vote for some of the
candidates they like (since they can always get them without
anyone’s help). In exchange these agents can get others not to vote
for candidates that they dislike.

Let RN ∈ Sn, C be a coalition that has a profitable deviation R′

C
against RN . Note that f (RN) " f (R′

C , RN\C ) (otherwise, if f (RN) $
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Table 1
The set of all separable preferences when K = 2.

R1 R2 R3 R4 R5 R6 R7 R8

∅ ∅ o1 o1 o2 o2 {o1, o2} {o1, o2}
o1 o2 ∅ {o1, o2} ∅ {o1, o2} o1 o2
o2 o1 {o1, o2} ∅ {o1, o2} ∅ o2 o1
{o1, o2} {o1, o2} o2 o2 o1 o1 ∅ ∅
f (R′

C , RN\C ), by quota 1, for any candidate o ∈ f (R′

C , RN\C ) \ f (RN),
o ∉ G(O, Ri) for any i ∈ N . By separability, for any i ∈ N ,
f (RN)Pif (R′

C , RN\C ) and R′

C could not be a profitable deviation,
which is a contradiction). Thus, there exists a candidate o such
that o ∈ f (RN) \ f (R′

C , RN\C ). Observe that for each such candidate
o ∈ f (RN)\ f (R′

C , RN\C ), since f is voting by quota 1, there is at least
one individual i ∈ C such that o ∈ G(O, Ri) and o ∉ G(O, R′

i). But
now if i declares a preference Ri such thatG(O, Ri) = G(O, R′

i)∪{o},
the outcome f (Ri, R′

C\{i}, RN\C ) = f (R′

C , RN\C ) ∪ {o}, which is, by
separability, strictly better for i under Ri than what she would get
by following the agreed upon strategy. Therefore, no profitable
deviation is credible under quota 1. A similar argument applies for
quota n.

This already proves the proposition for the case n = 2 since
there only the two extreme quotas can be used. From now on we
treat the case n > 3.

To prove that any voting by quota rule q, q ≠ {1, n} violates
immunity to credible deviations we construct profiles against
which there is a credible profitable deviation by some coalition.We
begin by the case K = 2 and then argue that this can be embedded
in a general profile presenting the same deviations whenever
K > 2.

Let n be odd. We distinguish three subcases.
(1) q > n−1

2 + 1. Let RN be as follows: the preferences of any
agent i in a set of n−1

2 agents are such that o1Pi {o1, o2} Pi∅, the
preferences of any agent j in a different set of n−1

2 agents are such
that o2Pj {o1, o2} Pj∅, and the preference of the remaining agent l
is such that τ(Rl) = {o1, o2}. Observe that f (RN) = ∅. Let C be the
coalition of all agents except agent l, let R′

C be such that each agent
i ∈ C , τ(R′

i) = {o1, o2}. Observe that since f (R′

C , RN\C ) = {o1, o2},
R′

C is a profitable deviation of C against RN . Finally, R′

C is credible
since no agent can change the outcome by a unilateral deviation
since n > 3.

(2) q =
n−1
2 + 1. Let RN be as follows: the preferences of any

agent i in a set of n−1
2 agents are such that o1Pi {o1, o2} Pi∅, the

preferences of any agent j in a different set of n−1
2 agents are such

that o2Pj {o1, o2} Pj∅, and the preference of the remaining agent l is
such that τ(Rl) = ∅. Observe that f (RN) = ∅. Let C be the coalition
of all agents except agent l, let R′

C be such that each agent i ∈ C ,
τ(R′

i) = {o1, o2}. Observe that since f (R′

C , RN\C ) = {o1, o2}, R′

C is
a profitable deviation of C against RN . Finally, R′

C is credible since
no agent can change the outcome by a unilateral deviation since
n > 3.

(3) q < n−1
2 + 1. Let RN be as follows: the preferences of any

agent i in a set of n−1
2 agents are such that o1Pi∅Pi {o1, o2}, the

preferences of any agent j in a different set of n−1
2 agents are such

that o2Pj∅Pj {o1, o2}, and the preference of the remaining agent l
is such that τ(Rl) = ∅. Observe that f (RN) = {o1, o2}. Let C be
the coalition of all agents except agent l, let R′

C be such that each
agent i ∈ C , τ(R′

i) = ∅. Observe that since f (R′

C , RN\C ) = ∅, R′

C is
a profitable deviation of C against RN . Finally, R′

C is credible since
no agent can change the outcome by a unilateral deviation since
n > 3.

Let n be even. We distinguish two subcases.
(1) q > n

2 . LetRN be as follows: the preferences of any agent i in a
set of n

2 agents are such that o1Pi {o1, o2} Pi∅, the preferences of any
agent j in a different set of n
2 agents are such that o2Pj {o1, o2} Pj∅.

Observe that f (RN) = ∅. Let C be the coalition of all agents, let R′

C
be such that each agent i ∈ C , τ(R′

i) = {o1, o2}. Observe that since
f (R′

C , RN\C ) = {o1, o2}, R′

C is a profitable deviation of C against RN .
Finally, R′

C is credible since no agent can change the outcome by a
unilateral deviation.

(2) q ≤
n
2 . LetRN be as follows: the preferences of any agent i in a

set of n
2 agents are such that o1Pi∅Pi {o1, o2}, the preferences of any

agent j in a different set of n
2 agents are such that o2Pj∅Pj {o1, o2}.

Observe that f (RN) = {o1, o2}. Let C be the coalition of all agents,
let R′

C be such that each agent i ∈ C , τ(R′

i) = ∅. Observe that since
f (R′

C , RN\C ) = ∅,R′

C is a profitable deviation ofC againstRN . Finally,
R′

C is credible since no agent can change the outcomeby a unilateral
deviation.

This is easily extended to the case K > 2 by considering profiles
where agents preferences are like the ones described in each case
above for objects 1 and 2, while all the agents share exactly the
same preferences concerning other objects for all cases analyzed
(for example, ok ∈ G(O,Ri) for each ok ∈ O \ {o1, o2}, each i ∈ N
and each individual preferenceRi used in the analyzed cases). �

Our next proposition covers the case n = 3, which is not
contemplated by the previous one.

Proposition 2. When n = 3 and K = 2, any voting by quota rule
is immune to credible deviations. When n = 3 and K ≥ 3, voting by
quotas 1 and 3 are the only voting by quota rules satisfying immunity
to credible deviations.

Proof. Let N = {1, 2, 3} and K = 2. For voting by quotas 1 and
3 the same argument in Proposition 1 applies. Consider voting by
quota 2. As already remarked in Barberà et al. (1991) this rule is
not only strategy-proof but also efficient. Thus the only coalitions
with profitable deviations consist of two agents. Let RN , C = {i, j},
and R′

C be a profitable deviation of C against RN .
To be a profitable deviation, observe that, by separability and

voting by quota 2, either (1) both candidates are chosen under
(R′

C , RN|C ) but none under RN , or (2) no candidate is chosen under
(R′

C , RN|C ) but both are chosen under RN , or (3) only one candidate
is chosen under RN and only the other candidate is chosen under
(R′

C , RN|C ).
In the first case, for each candidate, one of the agents in C

considered that candidate not good under Ri but good under R′

i .
In the second case, for each candidate, one of the agents in C
considered that candidate good under Ri but not good under R′

i .
In the third case, what was said in the second case holds for the
candidate chosen underRN andwhatwas said in the first case holds
for the candidate chosen under (R′

C , RN|C ).
In the three cases, either declaring Ri such that a good candidate

under R′

i not to be under Ri, or supporting a bad one will be an
individual profitable deviation with respect to (R′

C , RN|C ). Thus, R′

C
is not credible.

Let N = {1, 2, 3} and K = 3. For voting by quotas 1 and 3
the same argument in Proposition 1 applies. To prove that voting
by quota 2 violates immunity to credible deviations we provide
an example of a credible profitable deviation against a profile.
Let RN be as follows: the preferences of agent 1 are such that
τ(R1) = o1 and {o1, o2, o3}P1∅, the preferences of agent 2 are
such that τ(R2) = o2 and {o1, o2, o3}P2∅, and the preferences of
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agent 3 are such that τ(R3) = o3 and {o1, o2, o3}P3∅. Observe that
f (RN) = ∅. Let C = N , and R′

N be such that each agent i ∈ C ,
τ(R′

i) = {o1, o2, o3}. Since f (R′

N) = {o1, o2, o3}, R′

N is a profitable
deviation of C against RN . Finally, R′

N is credible since no agent can
change the outcome by a unilateral deviation.

This is easily extended to the case K > 3 by considering profiles
where agents preferences are like the ones described in each case
above for objects 1, 2, and 3, while all the agents share exactly the
same preferences concerning other objects for all cases analyzed
(for example, ok ∈ G(O,Ri) for each ok ∈ O\{o1, o2, o3}, each i ∈ N
and each individual preferenceRi used in the analyzed cases). �

3.2. The general case: choosing from a grid

We now consider the general case where the set of possible
choices in each dimension is not binary, as discussed in Barberà
et al. (1993). As we mentioned above, we consider K ≥ 2 since
for K = 1 any strategy-proof rule is also group strategy-proof and
thus immune to credible profitable deviations. The following three
propositions allow us to identify the class of generalized Condorcet
winner rules that are immune to credible deviations. Notice that
Propositions 3 and 4 completely characterize the case with at least
four agents in the society. Proposition 4 also covers the case of
two agents. The case of three agents, requiring special treatment,
is provided by Proposition 5.

As we have already remarked, our analysis in the preceding
subsection is a special case of what comes ahead. Let us then
use some of the intuition we got from the previous analysis to
anticipate the results that come. In the choice of sets example
(with the necessary qualifications regarding number of voters
and alternatives) the rules that emerge as not being vulnerable
are those where unanimity is required to either impose each
alternative, or to avoid it. In a similar spirit, we will see that,
for functions that are not vulnerable in the general case there
must be a specific privileged value in the interval corresponding
to each dimension, and that only unanimous decisions against the
prevalence of this particular value will avoid its selection. Hence,
immunity to credible deviations requires a privileged treatment
of one alternative per dimension, and a unanimity requirement to
escape it.

Here are the propositions.

Proposition 3. Let n > 3. Let f be a generalized Condorcet winner
rule. If f is defined by lists of parameters that are non-degenerate in
at least two dimensions, then f is not immune to credible deviations.

Proposition 4. Let n ≥ 2. Let f be a generalized Condorcet winner
rule. If f is defined by lists of parameters that are degenerate in at least
K − 1 dimensions, then f is immune to credible deviations.

Proposition 5. Let n = 3. Any generalized Condorcet winner rule
defined by lists of parameters such that are non-degenerate in two di-
mensions is immune to credible deviations. Any generalized Condorcet
winner rule defined by non-degenerate lists of parameters in at least
three dimensions is not immune to credible deviations.

Note that for societies with two agents, generalized Condorcet
winner rules have only one parameter, thus, since the list of
parameters is degenerate in each dimension, Proposition 4 covers
the 2-agents case. Moreover, although we only use the result in
Proposition 4 for the cases n = 2 and n ≥ 4, we prove it for the
3-agents case for completeness.

Now we turn to the proof of the above propositions.
Proof of Proposition 3. Let f be a generalized Condorcet winner
rulewith twodimensions, say 1 and 2, forwhich P1(f ) and P2(f ) are
not degenerate. Consider the median(s),medP1(f ) andmedP2(f ) of
these parameters’ lists. These medians may be unique or consist
of two contiguous points, say med−Pk(f ) < med+Pk(f ), for each
k ∈ {1, 2}.

In all cases below, in any profile we will define the preferences
of each agent inN concerning dimensions different from 1 and 2 to
be the same and with top at some point xk in Bk, k ∈ K \ {1, 2}.

Assume first that for each k ∈ {1, 2}, med−Pk(f ) ≠ med+Pk(f ).
This can only happen if n is odd and thus the number of param-
eters is even. Consider a partition of N into three sets, N , N , and
l where l is a singleton and such that #N = #N . Let the pro-
jections of RN in dimensions 1 and 2 be as follows. For agents
in N , let the k-dimensional top be med+Pk(f ) for k ∈ {1, 2}.
For agents in N , let the k-dimensional top be med−Pk(f ) for k ∈

{1, 2}. Agent l has the 1-dimensional top at med+P1(f ) and the
2-dimensional top at med−P2(f ). Also assume for agents in N ∪N that (med−P1(f ),med+P2(f ), xK\{1,2})Pi(med+P1(f ),med−P2(f ),
xK\{1,2}). Observe that fk(RN) = τk(Rl) for each k ∈ {1, 2} and
fk(RN) = xk for each k ∈ K \ {1, 2}. This is because, for each k ∈

{1, 2}, τk(Rl) tie-breakswhen computing fk as themedian of all tops
and parameters in Bk. Let C = N∪N and let R′

C be such that for each
agent i ∈ C , τ1(R′

i) = med−P1(f ), τ2(R′

i) = med+P2(f ).9 Observe
that fk(R′

C , RN\C ) = τk(R′

i) for k ∈ {1, 2}, and fk(R′

C , RN\C ) = xk for
each k ∈ K \ {1, 2}. This is because, for each k, fk(R′

C , RN\C ) is the
top for individual preferences in (R′

C , RN\C ) for n − 1 agents and it
coincides with med−P1(f ) in dimension 1 and with med+P2(f ) in
dimension 2. By definition, this shows that R′

C is a profitable devi-
ation of C against RN .

Moreover, for each dimension k ∈ {1, 2}, since fk(R′

C , RN\C ) is
either med−Pk(f ) or med+Pk(f ) and, given that n > 3, there are
at least two parameters smaller than or equal to fk(R′

C , RN\C ) =

med−Pk(f ) or greater than or equal to fk(R′

C , RN\C ) = med+Pk(f ).
Therefore, fk(R′

C , RN\C ) receives at least n+1 total votes for each
k ∈ {1, 2}. Hence, the profitable deviation R′

C is credible and f is not
immune to credible deviations.

Assume now that for at least some k ∈ {1, 2}, med−Pk(f ) =

med+Pk(f ) = medPk(f ).
Remember that med−Pk(f ) ≠ med+Pk(f ) can only hold if n is

odd and therefore the number of parameters is even. Because of
that in the case where the above equality holds for only one of the
two dimensions but not for the other can only happen when n is
odd. This distinction is used along the rest of the proof because in
one case a partition will only use two sets of agents N , N while in
other cases we will have to add a singleton l to it.

For n odd, let N , N , and agent l be the elements of a partition
of N such that #N = #N =

n−1
2 . For n even, let, N , N a partition

of N such that #N = #N =
n
2 . Let RN be as follows. The pref-

erences of agents in N are such that in the dimension 1 the top
is either med+P1(f ) when med−P1(f ) ≠ med+P1(f ), or medP1(f ),
otherwise. In dimension 2 the top is either med+P2(f ) when
med−P2(f ) ≠ med+P2(f ), or the highest parameter strictly smaller
thanmedP2(f ) if it exists andmed−P2(f ) = med+P2(f ), or the low-
est parameter strictly greater than medP2(f ), otherwise. The pref-
erences of agents inN are such that in dimension 1 the top is either
med−P1(f ) when med−P1(f ) ≠ med+P1(f ), or the highest param-
eter strictly smaller than medP1(f ) if it exists and med−P1(f ) =

med+P1(f ), or the lowest parameter strictly greater thanmedP1(f ),

9 In words, to define R′

C notice that by changing their vote the agents in N vote
for the tops of those inN in dimension 1, while agents inN vote for the top of those
in N in dimension 2.



S. Barberà et al. / Mathematical Social Sciences 90 (2017) 129–140 135
otherwise. In dimension 2 the top is either med−P2(f ) when
med−P2(f ) ≠ med+P2(f ), ormedP2(f ), otherwise.

Preferences of agent l (only required if n is odd) are defined
as follows: Rl is such that in dimension 1 agent l’s top is either
τ1(Rj), j ∈ N when med−P1(f ) ≠ med+P1(f ), or the highest pa-
rameter strictly smaller than medP1(f ) if such parameter exists or
the lowest parameter strictly greater than medP1(f ), otherwise.
In dimension 2 the top of agent l is either τ2(Ri), i ∈ N when
med−P2(f ) ≠ med+P2(f ), or the highest parameter strictly smaller
than medP2(f ) if such parameter exists or the lowest parameter
strictly greater thanmedP2(f ), otherwise.

From now on let i ∈ N and j ∈ N . We also assume that for any
agent m ∈ N ∪ N, (τ1(Ri), τ2(Rj), xK\{1,2}) Pm(τ1(Rj), τ2(Ri),

xK\{1,2}). Observe that fk(RN) = τk(Rl) if med−Pk(f ) ≠ med+Pk(f ),
and fk(RN) = medPk(f ) otherwise for each k ∈ {1, 2}, and that
fk(RN) = xk for each k ∈ K \ {1, 2}. This is because, for each
k ∈ {1, 2}, τk(Rl) tie-breaks when computing fk as themedian of all
tops and parameters in Bk in the casewhere only for one k ∈ {1, 2},
med−Pk(f ) = med+Pk(f ) = medPk(f ) and thus n is odd. And for
each k ∈ {1, 2},medPk(f ) tie-breaks when computing fk as theme-
dian of all tops and parameters in Bk in the case where for both k ∈

{1, 2},med−Pk(f ) = med+Pk(f ) = medPk(f ). Let C = N∪N and let
R′

C be such that for each agent j ∈ N , τ1(R′

j) = τ1(Ri) and τk(R′

j) =

τk(Rj) for each k ∈ K \ {1}, and for each i ∈ N , τ2(R′

i) = τ2(Rj) and
τk(R′

i) = τk(Ri) for each k ∈ K \ {2}. Observe that fk(R′

C , RN\C ) =

τk(R′

i) for k ∈ {1, 2}, and fk(R′

C , RN\C ) = xk for each k ∈ K \

{1, 2}. This is because, for each k where med−Pk(f ) = med+Pk(f ),
fk(R′

C , RN\C ) is the top for individual preferences in (R′

C , RN\C ) for
n agents. For each k where med−Pk(f ) ≠ med+Pk(f ), fk(R′

C , RN\C )
is the top for the preferences for n − 1 agents in (R′

C , RN\C ) and
coincides either with med−Pk(f ) or med+Pk(f ). By definition, this
shows that R′

C is a profitable deviation of C against RN .
Moreover, for the dimensions where med−Pk(f ) = med+Pk(f )

there is a parameter at fk(R′

C , RN\C ). For the dimensions where
med−Pk(f ) ≠ med+Pk(f ), fk(R′

C , RN\C ) is either med−Pk(f ) or
med+Pk(f ) and, given that n > 3, there are at least two param-
eters smaller than or equal to fk(R′

C , RN\C ) = med−Pk(f ) or greater
than or equal to fk(R′

C , RN\C ) = med+Pk(f ).
Therefore, fk(R′

C , RN\C ) receives at least n+1 total votes for each
k ∈ {1, 2}. Hence, the profitable deviation R′

C is credible and f is not
immune to credible deviations. �

Beforeweprove Propositions 4 and5,weneed somedefinitions,
claims and lemmas.

Let SBk be the set of all unidimensional (strict) single-peaked
preferences on Bk (for a formal definition see, for example,
Definition 6 when B is an integer interval).

Definition 10. Let f be a generalized Condorcet winner rule. For
any k ∈ K , define Fk :


SBk

n
→ Bk such that for anyRN ∈


SBk

n,
Fk(RN) = fk(RN) for any RN ∈ Sn such that τk(Ri) = τ(Ri) for any
i ∈ N .

Note that Fk is well-defined since fk is tops-only and any RN as
defined will work. Moreover, Fk is a unidimensional generalized
Condorcet winner rule as in Definition 7.

Definition 11. Let f be a generalized Condorcet winner rule, R′

C be
a profitable deviation of C against RN for f and let k ∈ K such that
fk(R′

C , RN\C ) ≠ fk(RN). We say that agent i ∈ C is losing according
to Ri at (R′

C , RN\C ) in dimension k ∈ K if
fk(RN), fK\{k}(R′

C , RN\C )

Pif (R′

C , RN\C ).

Define Lk(f , RC ′ , RN) =

i ∈ C : i is losing according to Ri at

(R′

C , RN\C ) in dimension k ∈ K

.

Similarly, we say that agent i ∈ C is winning according to Ri at
(R′

C , RN\C ) in dimension k ∈ K if

f (R′

C , RN\C )Pi

fk(RN), fK\{k}(R′

C , RN\C )

.

Define Wk(f , RC ′ , RN) =

i ∈ C : i is winning according to Ri at

(R′

C , RN\C ) in dimension k ∈ K

.

In short, when no confusion may arise, we will say that i is
losing or winning in dimension k and we denote the sets of losers
and winners as Lk and Wk, respectively. Note that Lk and Wk are
a partition of C by definition since preferences are strict. That is,
Lk ∪ Wk = C and Lk ∩ Wk = ∅.

Claim 1. Let i ∈ C ⊆ N, Ri ∈ S, x ∈ B. DefineRi ∈ S such that
(1) τ (Ri) = τ(Ri), (2) for any k ∈ K , for any zk, wk ∈ Bk, for xK\{k},
zk, xK\{k}

Pi wk, xK\{k}


⇔

zk, xK\{k}


Pi


wk, xK\{k}


, and

(3) for any k ∈ K , for any zK\{k}, wK\{k} ∈ BK\{k}, for any yk,
vk ∈ Bk,
yk, zK\{k}

Pi vk, zK\{k}


⇔

yk, wK\{k}

Pi vk, wK\{k}

.

We leave the proof to the reader. Note however, thatRi exists
and additively representable separable preferences work. A sepa-
rable preference (as defined in Le Breton and Sen, 1999) induces
the same ordering over dimension j for any alternative. Claim 1
says that starting from any preference relation R and any alterna-
tive x, we can construct a separable preference where the ordering
in each dimension is the one induced by R over that dimension rel-
ative to alternative x.

Claim 2. Let f be a generalized Condorcet winner rule and let R′

C be
a profitable deviation of C against RN for f . Then:

(i) For any agent i ∈ C, there exists k ∈ K for which fk(R′

C , RN|C ) ≠

fk(RN) such that f (R′

C , RN\C )Pi

fk(RN), fK\{k}(R′

C , RN\C )

.

(ii) If agent i ∈ C is such that f (R′

C , RN\C )Pi

fk(RN), fK\{k}(R′

C , RN\C )


for some k, then there exists another agent j ∈ C such that
fk(RN), fK\{k}(R′

C , RN\C )

Pjf (R′

C , RN\C ).
(iii) For any k ∈ K , there is an agent i ∈ C such that


fk(RN),

fK\{k}(R′

C , RN\C )

Pif (R′

C , RN\C ).

In words: (i) any agent in the profitable deviating coalition
is winning in some dimension, (ii) if an agent in the profitable
deviating coalition is winning in some dimension, there is another
agent in the deviating coalition losing in the same dimension. Part
(iii) ensures that there is at least a losing agent in each dimension.

We now turn to stating Lemmas 2 and 3.

Lemma 2. Let f be a generalized Condorcet winner rule and let R′

C
be a profitable deviation of C against RN for f . There exist k, k′

∈

K and i, j ∈ C such that the following hold:

fk(RN), fK\{k}(R′

C ,

RN\C )


Pif (R′

C , RN\C ),

fk′(RN), fK\{k′}(R′

C , RN\C )

Pjf (R′

C , RN\C ),

fk′

(R′

C , RN\C ), fK\{k′}(R′

C , RN\C )

Pi


fk′(RN), fK\{k′}(R′

C , RN\C )

, and


fk

(R′

C , RN\C ), fK\{k}(R′

C , RN\C )

Pj


fk(RN), fK\{k}(R′

C , RN\C )

.

Lemma 2 formalizes the idea that in any profitable deviation
there exist two agents and two dimensions where agents are
exchanging roles and helping each other.

Lemma 3. Let f be a generalized Condorcet winner rule, R′

C be a prof-
itable deviation of C against RN for f and k be such that Pk(f ) is de-
generate. If there exists i ∈ C winning at (R′

C , RN\C ) in dimension k,
then, the profitable deviation R′

C is not credible.
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Lemma 3 says that a credible profitable deviation relative to
a generalized Condorcet winner rule cannot involve an agent
winning in a degenerate dimension.

The proofs of Claim 2, and those of Lemmas 2 and 3 are in
Appendix. Finally, we can provide a proof for Propositions 4 and
5.

Proof of Proposition 4. Consider f as in the statement. By contra-
diction, let RN ∈ Sn, C ⊆ N , and R′

C ∈ Sc be a profitable deviation
of C against RN . By Lemma 2, there exist k, k′

∈ K and i, j ∈ C such
that
fk(RN), fK\{k}(R′

C , RN\C )

Pi


fk(R′

C , RN\C ), fK\{k}(R′

C , RN\C )

,

fk(R′

C , RN\C ), fK\{k}(R′

C , RN\C )

Pj


fk(RN), fK\{k}(R′

C , RN\C )

,

fk′(R′

C , RN\C ), fK\{k′}(R′

C , RN\C )

Pi


fk′(RN), fK\{k′}(R′

C , RN\C )

, and

fk′(RN), fK\{k′}(R′

C , RN\C )

Pj


fk′(R′

C , RN\C ), fK\{k′}(R′

C , RN\C )

.

By hypothesis, either Pk(f ) or Pk′(f ) is degenerate (or both).10 By
Lemma 3, R′

C is not a credible profitable deviation. This ends the
proof. �

Proof of Proposition 5. To prove the first statement, let f be
a generalized Condorcet winner rule with lists of parameters,
denoted in each dimension k as p−

k ≤ p+

k , and such that they
are non-degenerate in exactly two dimensions. To prove that f is
immune to credible deviations, let RN ∈ S3, C ⊆ N = {1, 2, 3},
and R′

C ∈ Sc be a profitable deviation of C against RN . If the
profitable deviation is such that there is an agent that is winning
in a dimension k for which Pk(f ) is degenerate. Thus, by Lemma 3,
R′

C would not be a credible profitable deviation. Now assume that
agents are winning at (R′

C , RN\C ) in dimensions k for which Pk(f ) is
not degenerate. By Lemma 2, there must be agents in C winning
at (R′

C , RN\C ) in the two dimensions with non-degenerate list of
parameters Pk(f ). Without loss of generality, assume that these
dimensions are 1 and 2. By strategy-proofness, C has at least two
agents. Without loss of generality, by anonymity and Lemma 2,
suppose that agents 1 and 2 belong to C and that agent 1 is
winningwhile agent 2 is losing at (R′

C , RN\C ) in dimension 1 and the
opposite holds in dimension 2. Consider the following two cases
depending on the size of the deviating coalition.
Case 1: C = {1, 2}.
Since agent 3’s preferences are fixed, we can assume now that we
have 3 fixed parameters in each dimension, two of them different:
p−

k , p
+

k , and τ(R3). Consider dimension 1. First, observe that

f1(RN), f1(R′

{1,2}, R3) ∈

min


τ1(R3), p−

1


,max


τ1(R3), p+

1


.

Since agent 1 is winning and agent 2 is losing at (R′

{1,2}, R3) in
dimension 1, then τ1(R1) must be strictly placed on one side of
f1(RN), while τ1(R2) must be weakly placed on the other side of
f1(RN). Moreover, for both i ∈ {1, 2}, τ1(R′

i) must be strictly on
the same side of f1(RN) and in fact on the same side as τ1(R1) is.
Then, note that agent 2 announcing R2 such that τ1(R2) = τ1(R2)
and for each k ∈ K \ {1}, τk(R2) = τk(R′

2) would be winning
at (R2, R′

1, R3) in dimension 1 and by separability she would be
better off f (R2, R′

1, R3)P2f (R′

{1,2}, R3) which means that R′

{1,2} is not
a credible profitable deviation.
Case 2: C = {1, 2, 3}.
Since R′

N ∈ Sn is a profitable deviation of C against RN , agent 3
is winning at R′

N in some dimension. Without loss of generality,
suppose that agent 3 iswinning at R′

N in dimension 1 (otherwise, by

10 For n = 2 any list of parameters is degenerate in all dimensions since all
parameters take the same value.
anonymity a similar argument would apply). We already assumed
that agent 1 is winning and agent 2 is losing at R′

N in dimension 1.
If f1(RN) ∈


p−

1 , p+

1


, then τ1(R2) = f1(RN) since agent 2 is losing at

R′

N , and also both τ1(R1) and τ1(R3) must be strictly on a different
side of f1(RN). But then, R′

C would not be a profitable deviation
where agents 1 and 3 are winning at R′

N in dimension 1. Thus,
f1(RN) ≤ p−

1 or f1(RN) ≥ p+

1 . Suppose f1(RN) ≤ p−

1 (a symmetric
argument would apply for the other case). Observe first that for
each i ∈ {1, 2, 3}, τ1(Ri) ≤ f1(RN). Since agent 2 is the only agent
losing at R′

N in dimension 1, τ1(R2) = f1(RN) and τ1(R1), τ1(R3) <
f1(RN), and thus f1(R′

C , RN\C ) < f1(RN). Then, note that agent 2
announcing R2 such that τ1(R2) = τ1(R2) and for each k ∈ K \ {1},
τk(R2) = τk(R′

2) would be winning at (R2, R′

{1,3}) in dimension 1
and by separability she would be better off f (R2, R′

{1,3})P2f (R
′

{1,2,3})

which means that R′

{1,2,3} is not a credible profitable deviation.
For all cases we obtain that the profitable deviation is not

credible which shows the first statement in the proposition.
To prove the second statement, let f be a generalized Condorcet

winner rule with lists of parameters, denoted in each dimension k
as p−

k ≤ p+

k , and such that they are non-degenerate in at least three
dimensions. Assume they are dimensions 1, 2, and 3. To prove that
f is not immune to credible deviations, we provide an example of a
credible profitable deviation against a profile. In any profilewewill
define the preferences of each agent in N concerning dimensions
different from 1, 2, and 3 to be the same andwith top at some point
xk in Bk, k ∈ K \ {1, 2, 3}.

Let RN ∈ S3 be as follows in dimensions 1, 2, and 3: de-
fine the preferences of agent 1 such that τ(R1) =


p+

1 , p−

2 , p−

3


and


p+

1 , p+

2 , p+

3 , xK\{1,2,3}

P1


p−

1 , p−

2 , p−

3 , xK\{1,2,3}

, the prefer-

ences of agent 2 such that τ(R2) =

p−

1 , p+

2 , p−

3


and


p+

1 , p+

2 , p+

3 ,

xK\{1,2,3}

P2


p−

1 , p−

2 , p−

3 , xK\{1,2,3}

, and the preferences of agent 3

such that τ(R3) =

p−

1 , p−

2 , p+

3


and


p+

1 , p+

2 , p+

3 , xK\{1,2,3}

P3


p−

1 ,

p−

2 , p−

3 , xK\{1,2,3}

. Observe that f (RN) =


p−

1 , p−

2 , p−

3 , xK\{1,2,3}

.

LetC = N , andR′

N such that each agent i ∈ C , τ(R′

i) =

p+

1 , p+

2 , p+

3


.

Since f (R′

N) =

p+

1 , p+

2 , p+

3


,R′

N is a profitable deviation ofC against
RN . Finally, R′

N is credible since no agent can change the outcome
by a unilateral deviation.

This ends the proof. �

4. Some alternative formulations of credibility, and their
consequences

We believe that our definition of a credible deviation is quite
attractive. But others could be conceivable, and in this section we
shall discuss other possible proposals, and relate them to ours.

We could take several directions to obtain alternative defini-
tions of immunity. First, we concentrate on varying the notion of
credibility to which we devote more attention.

To favor the comparison, let us go back to the interpretation of
credibility that we already proposed after Definition 4. A profitable
deviation by C from RN = (RC , RN\C ) is credible if R′

C is a
Nash equilibrium of the game among agents in C , when these
agents strategies are their admissible preferences and the outcome
function is f (·, RN\C ). Starting from this, we shall discuss, then,
three possible variants of the credibility concept.

The first variant will be one where, instead of letting agents in
C to have any choice of preferences as a strategy, we restrict them
to either use strategy R′

i or to revert to strategy Ri. The resulting
notion of a credible deviation will be weaker than ours. However,
we will show that the set of rules that are immune to credible
deviations will be the same (after a minimal qualification) under
either definition. This is expressed in Proposition 6.

A second variant will require that in order to be (extensively)
credible, the deviation R′

C should be a Nash equilibrium for the
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Table 2
The set S of all separable preferences when K = 2.

R1 R2 R3 R4 R1′

R2′

R3′

R4′

∅ o1 o1 {o1, o2} ∅ o2 o2 {o1, o2}
o1 ∅ {o1, o2} o1 o2 ∅ {o1, o2} o2
o2 {o1, o2} ∅ o2 o1 {o1, o2} ∅ o1
{o1, o2} o2 o2 ∅ {o1, o2} o1 o1 ∅
game where all agents (whether or not they are part of C) can
play any preference, and f is the outcome function. If the initial
function f is assumed to be strategy-proof (an assumption that we
do not need under our original definition), then again the set of
rules immune to credible deviations will still be the same under
either definition (see Proposition 7). However, the equivalence is
not true if our f function is not a priory restricted to be strategy-
proof, as shown in Example 3.

A third variant of our definition of credibility would result from
simply changing our original one, but ask the deviation to be a
strong Nash, rather than a Nash equilibrium. The rationale for
such proposal would be to allow for several agents to coordinate
when defecting from the agreed upon joint manipulation. We will
show that under this definition, all of the rules we consider will be
immune to credible deviations (see Proposition 8).11

We now present formal arguments to make the preceding
discussion more precise. We also state some results whose proofs
are included in Appendix.

Definition 12. Let f be a social choice function onUn. Let RN ∈ Un

and C ⊆ N . We say that R′

C ∈ Uc a profitable deviation of C against
RN is (type 1) credible if f (R′

C , RN|C )Rif (Ri, R′

C\{i}, RN\C ) for all i ∈ C .
A social choice function f on Un is immune to (type 1) credible
deviations if for any RN ∈ Un, any C ⊆ N , there is no (type 1)
credible profitable deviation of C against RN .

Proposition 6. Any social choice function f on Un is immune to
credible deviations if and only if f is immune to (type 1) credible
deviations.

Definition 13. Let f be a social choice function onUn. Let RN ∈ Un

and C ⊆ N . We say that R′

C ∈ Uc a profitable deviation of C against
RN is (type 2) credible if f (R′

C , RN|C )Rif (Ri, R′

C\{i}, RN\(C∪{i})) for all
i ∈ N and all Ri ∈ U. A social choice function f on Un is immune
to (type 2) credible deviations if for any RN ∈ Un, any C ⊆ N ,
there is no (type 2) credible profitable deviation of C against RN .

Proposition 7. Any strategy-proof social choice function f on Un is
immune to credible deviations if and only if f is immune to (type 2)
credible deviations.

The following example shows that the latter immunity concept
does not imply strategy-proofness. Therefore, the concept may be
useful to apply in contexts where strategy-proofness is not to be
expected, but onemay still be interested in discussing the diversity
of manipulative actions by groups of voters.

Example 3. Immunity to (type 2) credible deviations does not im-
ply strategy-proofness under appropriately restricted domains.12

Let K = 2, N = {1, 2}, and for i ∈ N , let the set of admissible
preferences for both agents be S, that is, preferences defined as in
Table 2. Consider the social choice function f defined as in Table 3.

11 The samewill hold if instead of allowing agents to use any preferences, they are
only assumed to use their true and the manipulative one.
12 This example can be straightforwardly generalized when agents have different
sets of preferences: Let R1 = {R1, R2, R3, R4

}, R2 = {R1′

, R2′

, R3′

, R4′
} in Table 2,

and f defined by the first two rows and columns in Table 3.
Table 3
The social choice function f defined on S2 .

f R1′

2 , R2′

2 R3′

2 , R4′

2 R3
2, R

4
2 R1

2, R
2
2

R3
1, R

4
1 o1 o2 o1 o1

R1
1, R

2
1 o2 o1 o1 o1

R1′

1 , R2′

1 o2 o2 o1 o2
R3′

1 , R4′

1 o2 o2 o2 o1

Note that in the direct revelation game induced by this social
choice function, no agent has a dominant strategy. Hence, the rule
is not strategy-proof (thus, violating immunity to both credible and
(type 1) credible deviations). Also notice that the grand coalition
has no profitable deviation. Hence, all profitable deviations involve
a single agent, and for each one of them, the remaining agent can
respond with a new profitable deviation. Hence, the social choice
function is immune to (type 2) credible deviations, even if not
strategy-proof.

Definition 14. Let f be a social choice function onUn. Let RN ∈ Un

and C ⊆ N . We say that R′

C ∈ Uc a profitable deviation of C
against RN is strongly credible if f (R′

C , RN|C )Rif (RS, R′

C\S, RN\C ) for
all S ⊆ C , for all RS ∈ Us and for some i ∈ S. A social choice
function f on Un is immune to strongly credible deviations if for
any RN ∈ Un, any C ⊆ N , there is no strongly credible profitable
deviation of C against RN .

Proposition 8. All generalized Condorcet winner rules are immune
to strongly credible deviations.

Let us say thatwe are aware that the idea of credibilitymayhave
other expressions. As already noted in the Introduction, Bernheim
et al. (1987) introduced the concept of coalition-proof Nash
equilibrium, and Peleg and Sudhölter (1999) studied its application
to the set of strategy-proof voting rules inmultidimensional single-
peaked preference domains. This equilibrium notion turns out not
to be discriminating, since all Generalized Median Voter Schemes
satisfy it. That conclusion is the same as the one we obtain
under our notion of strong credibility (Proposition 8) although
they obtain it under weaker assumptions: we assume anonymity
and ontoness. Peleg (1998) and Peleg and Sudhölter (1999)
proposed the notion of strong coalition-proofness. The latter
paper comments, by means of an example, that not all strategy-
proof rules defined on themultidimensional single-peaked domain
satisfy this condition. One can show that, in spite of its complicated
formulation, their notion of strong coalition-proofness essentially
boils down to requiring our basic notion of immunity to credible
deviations in our context.13 Hence, we can read their example as
an announcement that there is room for the analysis we have just
provided, identifying and characterizing those functions among
generalized Condorcet winner rules that satisfy these conditions
and those that do not. Another related paper is due to Serizawa
(2006), who defines an immunity notion in the line in our paper
that only considers profitable deviations by pairs of agents.

13 For a formal proof of this, see the proof of Proposition 9 in Appendix.
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Alternative definitions of credibility could also be obtained by
weakening the notion of a profitable deviation allowing some,
though not all, deviators to report their original preference. In this
case, the new set of profitable deviationswould be larger than ours.
However, the resulting immunity notion would be equivalent to
the oneweuse (seeDefinition 5 or Definition 14). Also notice that if
indifferences are allowed one could also consider additional types
of deviations and allowing some of the agents in the deviating
coalition to weakly gain by deviating jointly. We do not go further
in this direction because in our application all preferences are strict
(see Serizawa, 2006).

5. Final remarks

Wehave studied the incentives of groups of agents to cooperate
in manipulating social choice functions, by formalizing different
notions of credibility, and characterized subclasses of strategy-
proof rules that may be immune to credible manipulations by
groups in multidimensional single-peaked preference domains.

The voting rules we have identified are interesting in several
respects.

One interesting aspect is efficiency. It is clear that strategy-
proof rules cannot be fully efficient unless they satisfy a strong
notion of group strategy-proofness. Yet, those that satisfy our
intermediate property have the interesting feature that any
departure from their prescribed outcomes leading to an efficient
one would not be credible. Thus, they are, in that sense, efficient
up to credibility constraints.

Another interesting conclusion of our analysis is that those rules
that imply extreme distributions of voting power are immune to
credible deviations from truth-telling. One could think that this
distribution is uneven or unfair. However, the class of Generalized
Condorcet winner rules that are obtained when the definitional
parameters are concentrated in a single point do coincide, in each
dimension, with those characterized by Thomson (1993, 1999)
as being the only methods that satisfy an attractive normative
property. His property, that Thomson calls ‘‘welfare domination
under preference replacement’’, requires that when one agent
changes preferences and modifies the social outcome, all other
agents’ welfare must change in the same direction. Hence, we not
only found exactly what are the conditions that allow immunity,
but also discovered that they may be partially justified in terms of
pre-existing normative concepts.

Finally, let us acknowledge that the treatment of strategic
considerations by the different agents is somewhat asymmetric.
Indeed, groups are allowed to form in order to manipulate, but
our main concept of credibility only considers single-agent non-
cooperative departures from cooperative agreements, à la Nash.
This invites for further reflection regarding these and other issues
of coalition formation, that we hope to keep developing in further
work.
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Appendix

We first present the proofs of Claim 2, and Lemmas 2 and 3 used
in the proofs of Propositions 4 and 5 in Section 3.2. For that, we
need Definition 15.

Definition 15. Let i ∈ N , Ri ∈ S, k ∈ K , let Sk(Ri) =

Rk
i ∈ SBk :

τ(Rk
i ) = τk(Ri)


where SBk is the set of all unidimensional (strict)

single-peaked preferences on Bk and τ(Rk
i ) is the best alternative

of Rk
i in Bk.

We call a Rk
i ∈ Sk(Ri) ⊆ SBk a unidimensional single-peaked

preference on Bk induced from Ri.

Proof of Claim 2. Let f be a generalized Condorcet winner rule
and let R′

C be a profitable deviation of C against RN for f . To prove
part (i), define K =


k ∈ K : fk(R′

C , RN|C ) ≠ fk(RN)

. Without loss

of generality, let K = {1, . . . , k}, k denoting its cardinality. By
contradiction, suppose that there exists i ∈ C such that for any
k ∈ K , agent i is not winning according to Ri at (R′

C , RN\C ) in
dimension k. That is, agent i is losing at (R′

C , RN\C ) in dimension k:
fk(RN), fK\{k}(R′

C , RN\C )

Pi f (R′

C , RN\C ). LetRi bedefinedbyClaim1
given x = f (R′

C , RN\C ). By part (2) of Claim 1, we have that for any
k ∈ K ,


fk(RN), fK\{k}(R′

C , RN\C )
 Pif (R′

C , RN\C ). In particular, for
k = 1, we obtain


f1(RN), fK\{1}(R′

C , RN\C )
Pif (R′

C , RN\C ).
Now, proceed as follows: define k − 1 steps and in each step

t ∈ {1, . . . , k − 1} replace ft+1(R′

C , RN\C ) by ft+1(RN) in

ft(RN),

f{1,...,t−1}(RN), fK\{t+1,...,k}(R
′

C , RN\C ), fK\K(R′

C , RN\C )

.

By transitivity of preferences we will obtain that f (RN)Pi
f (R′

C , RN\C ) which will be the desired contradiction. To check the
contradiction, note that by part (1) in Claim 1 and by tops-onliness
of the generalized Condorcet winner rule f , if R′

C is a profitable
deviation of C against RN , R′

C is also a profitable deviation of C
against (RC , RN\C ).

Consider the first step, t = 1, and change f2(R′

C , RN\C ) by f2(RN).
By part (3) of Claim 1 applied for k = 2, zK\{2} = (f1(RN),
fK\{1,2}(R′

C , RN\C )) and wK\{2} = fK\{2}(R′

C , RN\C ) we obtain the
following:

(f2(RN), zK\{2})Pi(f2(R′

C , RN\C ), zK\{2})

⇔ (f2(RN), wK\{2})Pi(f2(R′

C , RN\C ), wK\{2}).

Note that (f2(RN), wK\{2})Pi(f2(R′

C , RN\C ), wK\{2}) (equivalently,
(f2(RN), fK\{2}(R′

C , RN\C )) Pif (R′

C , RN\C )) holds since by part (2) of
Claim 1 applied for k = 2, z2 = f2(RN), w2 = f2(R′

C , RN\C ) we
obtain the following:

(f2(RN), fK\{2}(R′

C , RN\C ))Pif (R′

C , RN\C )

⇔ (f2(RN), fK\{2}(R′

C , RN\C ))Pif (R′

C , RN\C ).

And moreover, the latter strictness preference relationship holds
by hypothesis at the beginning of this proof. Thus, we get that

(f2(RN), f1(RN), fK\{1,2}(R′

C , RN\C ))

×Pi(f2(R′

C , RN\C ), f1(RN), fK\{1,2}(R′

C , RN\C )).

Repeating exactly the same argument for any t ∈ {2, . . . , k−1},
wewill obtain our desired contradiction: f (RN)Pif (R′

C , RN\C )which
ends the proof of part (i).

To prove part (ii), by contradiction let i ∈ C be winning at
(R′

C , RN\C ) in some dimension k and suppose that for any other
agent j ∈ C \{i}, j is also winning at (R′

C , RN\C ) in k. That is, suppose
that for any j ∈ C\{i}, f (R′

C , RN\C )Pj

fk(RN), fK\{k}(R′

C , RN\C )

holds.

We now proceed to define unidimensional single-peaked
preferences for dimension k using Definition 15 as follows: for any
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j ∈ N \ C , let Rk
j ∈ Sk(Rj); for any i ∈ C , let R′k

i ∈ Sk(R′

i), and for any
l ∈ C let Rk

l ∈ Sk(Rl) such that for any xk, yk ∈ Bk,

xkPk
l yk ⇔ (xk, fK\{k}(R′

C , RN\C ))Pl(yk, fK\{k}(R′

C , RN\C )).

Note that Rk
l is well-defined. Let xk = fk(R′

C , RN\C ) and yk = fk(RN).
Then, we obtain by definition of Rk

l that for any j ∈ C \ {i},
fk(R′

C , RN\C )Pk
l fk(RN). By Definition 10, by any l ∈ C , Fk(R′k

C , Rk
N\C )P

k
l

Fk(Rk
N). Observe that this last expression is a contradiction to group

strategy-proofness of generalized Condorcet winner rules. This
ends the proof of part (ii).

To prove part (iii), by contradiction suppose that there exists
k ∈ K such that for any agent i ∈ C , f (R′

C , RN\C )Pi

fk(RN), fK\{k}(R′

C ,

RN\C )

(*). Now, by Definition 15, let Rk

i , R
′k
i be the induced one di-

mensional preferences on Bk as follows:
For i ∈ N \ C , take any Rk

i ∈ Sk(Ri). For i ∈ C , take R′k
i ∈ Sk(R′

i).
For i ∈ C , take Rk

i ∈ Sk(Ri) such that x = f (R′

C , RN\C ). That is, for
any xk, yk ∈ Bk,

ykPk
i xk ⇔


yk, fK\{k}(R′

C , RN\C )

Pk
i


xk, fK\{k}(R′

C , RN\C )

.

Observe that by Definition 10, Fk(Rk
N) = fk(RN) and Fk(R′k

C , Rk
N\C ) =

fk(R′

C , RN\C ). Thus, combining the latter equality with expression
(*), we obtain that for any k and any agent i ∈ C , Fk(R′

C , RN\C )

Pk
i Fk(RN) holds. And this contradicts that Fk be a group strategy-

proof. This end the proof of part (iii). �

Proof of Lemma 2. Let f be a generalized Condorcet winner rule
and let R′

C be a profitable deviation of C against RN for f . Consider,
for each dimension k, the sets Lk ≡ Lk(f , RC ′ , RN) and Wk ≡

Wk(f , RC ′ , RN), that is, the partition of agents in C defined by the
ones winning and the ones losing at (R′

C , RN\C ) in dimension k (see
Definition 11). By part (i) of Claim 2 for any agent in C there is
k ∈ K such that i ∈ Wk. By part (ii) of Claim 2 there exists a
different agent j in C such that j ∈ Lk. Again, by part (i) of Claim 2,
j ∈ Wk′ for some k′

∈ K \ {k}. If some agent i ∈ Wk belongs to Lk′ ,
the result holds.

Otherwise, suppose that for any i ∈ Wk, i ∉ Lk′ . Since Lk ∪Wk =

Lk′ ∪Wk′ = C , thenWk $ Wk′ and Lk′ $ Lk (note that Lk′ ≠ Lk since
j ∈ Lk ∩ Wk′ ). Take now an agent l ∈ Lk′ which exists by part (ii) of
Claim 2. By part (i) of Claim 2, l ∈ Wk′′ for some k′′

∈ K . If some
agents i ∈ Wk′ , i ∈ Lk′′ , then the result holds.

Otherwise, suppose that for any i ∈ Wk′ , i ∉ Lk′′ . Since Lk′ ∪

Wk′ = Lk′′ ∪ Wk′′ = C , then Wk′ $ Wk′′ and Lk′′ $ Lk′ $ Lk (note
that Lk′′ ≠ Lk′ since j ∈ Lk′ ∩ Wk′′ ). Since there are a finite number
of agents in Lk and a finite number of k, wewill obtain the result for
some k. Otherwise, there would be a k∗ such that Lk∗ = ∅ which is
a contradiction to part (iii) of Claim 2. �

Proof of Lemma 3. Let f be a generalized Condorcet winner rule,
R′

C be a profitable deviation of C against RN for f and k be such
that Pk(f ) is degenerate. Since i ∈ Wk, then fk(R′

C , RN\C ) ≠ fk(RN).
Consider two cases.

In the first case, in RN each agent’s k-dimensional top is placed
on the same side of the parameters’ unique position. Without loss
of generality, assume that the k-dimensional tops are to the left
of the parameter. Note that fk(RN) is the top closest to the sin-
gle parameter. Since i ∈ Wk, then fk(R′

C , RN\C ) < fk(RN). Other-
wise, if fk(R′

C , RN\C ) > fk(RN), by single-peakedness,14 we obtain
fk(RN), fK\{k}(R′

C , RN\C )

Pi


fk(R′

C , RN\C ), fK\{k}(R′

C , RN\C )

contra-

dicting that i ∈ Wk. Then, by definition of f , for any l ∈ N such that

14 In this proof and that of Proposition 8, when we say ‘‘by single-peakedness’’
we mean both, unidimensional single-peaked on Bk and multidimensional single-
peaked on B.
τk(Rl) = fk(RN) then l ∈ C and τk(R′

l) ≤ fk(R′

C , RN\C ) < fk(RN). And,
by single-peakedness, for any such l ∈ C ,


fk(RN), fK\{k}(R′

C , RN\C )


Pl

fk(R′

C , RN\C ), fK\{k}(R′

C , RN\C )

. Take any of such agents, say j ∈

C . Take profile (R′

C , RN\C ) and let j ∈ C announce Rj such that τk(Rj)

= τk(Rj) and for each k′
∈ K \ {k}, τk′(Rj) = τk′(R′

j). By definition
of f , fk(Rj, R′

C\{j}, RN\C ) = fk(RN) and fK\{k}(Rj, R′

C\{j}, RN\C ) = fK\{k}

(R′

C , RN\C ). Therefore, f (Rj, R′

C\{j}, RN\C )Pjf (R′

C , RN\C ) by single-
peakedness, which means that R′

C is not a credible profitable de-
viation.

In the second case, on both sides of the single parameter there
is at least one agent’s top given RN . Thus, fk(RN) is the single pa-
rameter. Suppose, without loss of generality, that fk(R′

C , RN\C ) <
fk(RN). Observe that by definition of f , there exists j ∈ C
such that τk(R′

j) < fk(R′

C , RN\C ) < τk(Rj). Then, by single-
peakedness, for agent j ∈ C ,


fk(RN), fK\{k}(R′

C , RN\C )

Pj


fk(R′

C ,

RN\C ), fK\{k}(R′

C , RN\C )

. As in the above case, take profile (R′

C , RN\C )

and let agent j ∈ C announce Rj such that τk(Rj) = τk(Rj) and for
each k′

∈ K \ {k}, τk′(Rj) = τk′(R′

j). By definition of f , fk(Rj, R′

C\{j},

RN\C ) = fk(RN) and fK\{k}(Rj, R′

C\{j}, RN\C ) = fK\{k}(R′

C , RN\C ). Thus,
f (Rj, R′

C\{j}, RN\C )Pjf (R′

C , RN\C ) by single-peakedness meaning that
R′

C is not a credible profitable deviation. This ends the proof. �

We now prove Propositions 6, 7, and 8 stated in Section 4.

Proof of Proposition 6. By definition immunity to (type 1) cred-
ible deviations implies immunity to credible deviations. To prove
the converse, let RN ∈ Un, C ⊆ N , and R′

C ∈ Uc be a profitable
deviation of C against RN . Suppose that for all i ∈ C , f (R′

C , RN|C )
Rif (Ri, R′

C\{i}, RN\C ). By Lemma1 f is strategy-proof, thus f (R′

C , RN|C )

Ii f (Ri, R′

C\{i}, RN\C ) for all i ∈ C . By immunity to credible devia-
tions, there exists i ∈ C such that f (Ri, R′

C\{i}, RN\C )Pif (R′

C , RN|C )

for some Ri ∈ U. By these two facts, for some i ∈ C , f (Ri, R′

C\{i},

RN\C )Pif (Ri, R′

C\{i}, RN\C )which contradicts strategy-proofness. �

Proof of Proposition 7. By definition immunity to credible devia-
tions implies immunity to (type 2) credible deviations. To prove
the converse, let RN ∈ Un, C ⊆ N , and R′

C ∈ Uc be a prof-
itable deviation of C against RN . Suppose that for all i ∈ C ,
f (R′

C , RN\C )Rif (Ri, R′

C\{i}, RN\C ) for all Ri ∈ U. Thus, f (R′

C , RN\C )

Rif (Ri, R′

C\{i}, RN\C ) for all i ∈ C . By immunity to (type 2) credible
deviations, there exists i ∈ N such that f (Ri, R′

C\{i}, RN\(C∪{i}))Pif (R′

C ,

RN\C ) for some Ri ∈ U. Suppose that agent i ∈ C . Since f is
strategy-proof, f (R′

C , RN\C )Iif (Ri, R′

C\{i}, RN\C ) for all i ∈ C . Then,
we have that for some i ∈ C , f (Ri, R′

C\{i}, RN\C )Pif (Ri, R′

C\{i}, RN\C )
which contradicts strategy-proofness. Therefore, it must be that
agent i ∈ N \ C . Thus, f (Ri, R′

C , RN\(C∪{i}))Rif (Ri, R′

C , RN\(C∪{i}))
by strategy-proofness, and therefore we obtain f (Ri, R′

C , RN\(C∪{i}))
Pif (R′

C , RN\C ) for some i ∈ N \ C which contradicts that f is single-
valued and R′

i = Ri. �

Proof of Proposition 8. Let f be a generalized Condorcet winner
rule with lists of parameters, denoted in each dimension k as p−

k ≤

p+

k . To prove that f is immune to strongly credible deviations, let
RN ∈ Sn, C ⊆ N , and R′

C ∈ Sc be a profitable deviation of C against
RN . Since R′

C is a profitable deviation, by part (i) of Claim 2, there
must exist at least one dimension k in which fk(RN) ≠ fk(R′

C , RN\C )
and some agent i ∈ C is winning. By part (ii) of Claim 2, there is an
agent j ∈ C \ {i} who is losing in that dimension k. Let C andC be
a partition of C such that C = {i ∈ C: is winning in dimension k}
and C = {j ∈ C: is losing in dimension k}. Suppose, without loss
of generality, that fk(R′

C , RN\C ) < fk(RN). By definition of C , for any
i ∈ C , τk(Ri) < fk(RN). By definition ofC , τk(Rj) > fk(R′

C , RN\C ). We
distinguish two cases:
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Case 1. For any j ∈ C , τk(Rj) ≤ fk(RN). Since fk(R′

C , RN\C ) < fk(RN),
then for any l ∈ C , τk(R′

l) ≤ fk(RN). Also, it must happen that for
some j ∈ C , τk(Rj) = fk(RN). Let S = {j ∈ C : τk(Rj) = fk(RN)}. Then
for any l ∈ S, let Rl be such that τk(Rl) = τk(Rl) and τk′(Rl) = τk′(R′

l)

for any k′
∈ K \{k}. Thus fk(RS, R′

C\S, RN\C ) = fk(RN) and by single-
peakedness f (RS, R′

C\S, RN\C )Plf (R′

C , RN\C ) for any l ∈ S, which
means that R′

C is not strongly credible.

Case 2. For some j ∈ C , τk(Rj) > fk(RN). Let S = {j ∈ C : τ(Rj) ≥

fk(RN) and τk(R′

l) ≠ τk(Rl)}. Since fk(R′

C , RN\C ) < fk(RN), S is not
empty. Then for any l ∈ S, let Rl be such that τk(Rl) = τk(Rl)
and τk′(Rl) = τk′(R′

l) for any k′
∈ K \ {k}. By definition of f ,

fk(RS, R′

C\S, RN\C ) = fk(RN) and for any k′
∈ K \ {k}, fk′(RS, R′

C\S,

RN\C ) = fk′(R′

C , RN\C ). Thus, by single-peakedness, f (RS, R′

C\S, RN\C )

Plf (R′

C , RN\C ) for any l ∈ S, meaning that R′

C is not strongly
credible. �

As promised in Section 4, we now prove the equivalence in our
context between strong coalition-proofness as defined by Peleg
and Sudhölter (1999) and our immunity to credible deviations of f .
To do so,we first introduce the notion of strong coalition-proofness
for revelation games.

A revelation game in strategic form is a system G(f ,RN) = (N, A,
(U)i∈N , f ,RN)whereN is the set of players,A is the set of outcomes,
U the (non-empty) set of strategies of each agent (the set of all
possible preferences as defined in Section 2), f is a function from
preference profiles to A, andRN is a specific profile of preferences.
Then, given a game G(f ,RN), a coalition C ⊆ N , C ≠ ∅, and
a profile RN ∈ Un, the reduced game of G(f ,RN) with respect
to C and RN is the game in strategic form GC,RN (fRN\C ,RC ) =

(C, A, (U)i∈C , f
RN\C ,RC ) where C is the set of players, A is the set

of outcomes, U the (non-empty) set of strategies of each agent,
fRN\C : Uc

→ A is a function such that fRN\C (RC ) = f (RC ,RN\C )

for all RC ∈ Uc , andRC is the profile of preferences.

Definition 16. Let G(f ,RN) = (N, (U)i∈N , f ,RN) be a revelation
strategic game. We say thatRN ∈ Un is a strong coalition-proof
Nash equilibrium if (1)RN is a Nash equilibrium of G(f ,RN); and
(2) for every C ⊆ N , C ≠ ∅, and every Nash equilibrium R′

C

of GC,RN (fRN\C ,RC ), there exists i ∈ C such that fRN\C (RC ) =

f (RN)Rif (R′

C ,
RN\C ) = fRN\C (R′

C ).

Definition 17. A social choice function f on Un is strong
coalition-proof if for any RN ∈ Un truth telling is a strong
coalition-proof Nash equilibrium of G(f , RN).

The strategy space for each agent is U, and the outcome
function is f .
Proposition 9. Any strong coalition-proof social choice function f
is immune to credible deviations. The converse holds when best
deviations exist.

Proof of Proposition 9. By contradiction, suppose that f is not
immune to credible deviations. That is, there exist RN , and a
deviation R′

C of C against RN that is profitable, f (R′

C , RN\C )Pif (RN),
and credible, f (R′

C , RN\C )Rif (Ri, R′

C\{i}, RN\C ) for all Ri ∈ U and for
all i ∈ C . The latter implies that R′

C is a Nash equilibrium of the
reduced game GC,RN . Since f is strong coalition-proof, then RN is a
strong coalition-proof Nash equilibrium of G(f , RN). By condition
(2) in Definition 16 there must exist an agent i ∈ C such that
f (RN)Rif (R′

C , RN\C ) contradicting that R′

C is a profitable deviation
of C against RN .

To show the converse, assume that there exist best deviations.
Let f be immune to credible deviations and take any RN .We have to
show that truth telling is a strong coalition-proof Nash equilibrium
of G(f , RN). By Lemma 1, f is strategy-proof. Therefore, RN is a Nash
equilibrium of G(f , RN) (part (1) in Definition 16). Take C ⊆ N ,
C ≠ ∅, and any Nash equilibrium R′

C of GC,RN . Since f is immune to
credible deviations, no profitable deviation can be credible, that is,
there exists an agent i ∈ C such that f (RN)Rif (R′

C , RN\C ).
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